燃料電池を設計・運転するとき、ある電流を取り出すためにどれだけの水素(H₂)や酸素(O₂)を供給する必要があるかは基本中の基本です。本記事では、ファラデーの法則と理想気体則を使って「電流 → 必要ガス流量」を求める考え方を整理し、ツールに組み込みやすい式、入出力、実装上の注意点、例題までわかりやすく説明します。
何を計算するのか(目的)
ある電流 I(A)を燃料電池セル/スタックから取り出したいときに、
- 必要な水素供給流量(H₂)
- 必要な酸素(空気)供給流量(O₂ または空気としての流量)
を求めます。ツールは「理論的に必要な流量(ファラデー計算)」を出力し、運転余裕や効率(利用率)を考慮して安全側の流量推薦も表示します。
基本式(ファラデーの法則)
電子の移動と物質量の関係はファラデーの法則で表せます。
\(\dot{n} = \frac{I}{nF}\)
- \(\dot{n}\):生成・消費される物質量(mol/s)
- I:電流(A)
- n:1 分子(反応式で扱う1モル)あたりの電子数(\(e^-/mol\))
- 水素反応(\(\mathrm{H_2 \rightarrow 2H^+ + 2e^-}\))では n=2(1 mol H₂ が 2 mol e⁻)
- 酸素(O₂)反応( \(\mathrm{O_2 + 4e^-+4H^+ = 2 H_2 O}\))ではn=4(1 mol O₂ が 4 mol e⁻)
- F:ファラデー定数 (\(\mathrm{C/mol}\))
物質量流率 \(\dot{n}\) が求まれば、理想気体則で体積流量に変換できます。 \(\dot{V} = \dot{n} \cdot \frac{RT}{P}\)
- \(\dot{V}\):体積流量(m³/s)
- R:気体定数 =8.314462618 J/(mol⋅K)
- T:絶対温度(K)
- P:圧力(Pa)
具体的な式(H₂ と O₂)
水素(H₂)の体積流量(m³/s)
\(\dot{V}_{\mathrm{H_2}} = \dot{n}_{\mathrm{H_2}} \cdot \frac{RT}{P}=\frac{I}{2F}\cdot\frac{RT}{P}\)
酸素(O₂)の体積流量(m³/s)
\(\dot{V}_{\mathrm{H_2}} =\dot{n}_{\mathrm{O_2}}\cdot \frac{RT}{P}=\frac{I}{4F}\cdot\frac{RT}{P}\)
注意:燃料電池が空気を酸化剤として用いる場合、空気側の供給は体積比(酸素約21%)を考慮します。一般に空気流量は\(\dot{V}_{\text{air}}=\dot{V}_{\mathrm{O_2}}/0.21\)(理想的な見積もり)となります。ただし実際は余裕率(stoichiometric ratio)を掛けます。
ツールに必要な入力項目
必須入力
- 電流 I(A):数値入力
- セル枚数
- 反応物選択:H₂/O₂(通常 H₂ を燃料、空気 を酸化剤)
- 温度 T(°C ) — 初期値 25°C
- 圧力 P(kPa ) — 初期値 101.325 kPa
- 利用率(Faradaic efficiency) \(\eta_F\)(%) — 実効的に何%が反応に使われるか(初期値 100%)
- ストイキ比(余裕率、stoichiometric ratio) — 実際供給は理論値の何倍か(例:空気側は 1.2–2.0)
- 単位選択(出力を L/min, NL/min など)
出力項目
- H2必要流量
- O2必要流量
- Air必要流量
🔧流量計算ツール
例題(数値例:電流 10 A のとき)
条件:
- 電流 \(I=10 \mathrm{A}\)(セル1個あたり)
- 温度 T=298.15 K
- 圧力 P=101.325 kPa
- Faradaic efficiency = 100%
- ストイキ比1.0
計算:
- 水素の物質量流率
\(\dot{n}_{\mathrm{H_2}}=\frac{10}{2\times96485}=5.184\times10^{-5}\ \mathrm{mol/s}\)
- 25°C・101.325kPa のモル体積 ≒ 24.46 L/mol(=0.02446 m³/mol)
体積流量:\(\dot{V}_{\mathrm{H_2}} = 5.184\times10^{-5}\times0.02446 = 1.27\times10^{-6}\ \mathrm{m^3/s}\)
→ 単位換算:
- L/s:\(1.27\times10^{-6}\ \mathrm{m^3/s}=0.00127\ \mathrm{L/s}\)
- L/min:\(0.00127\times60=0.076\ \mathrm{L/min}\)
つまり、10 A を取り出すには理論的に約 0.076 L/minの H₂ が必要(25°C,101.325kPa, η=100% の場合)。
酸素は電子当たりの係数が異なり(n=4)酸素体積流量は水素の半分(モルベース)になります。空気を用いる場合は酸素分率 21% を考慮して空気流量を見積もります(+ストイキ比)。
まとめ(記事の締め)
燃料電池の「電流 → ガス流量」は、ファラデーの法則と気体の状態方程式を組み合わせれば簡単に計算できます。